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Abstract Submitted 
For the DPP02 Meeting of 

The American Physical Society 
November 1 1 - 1 5,2002 

Orlando, FL 

Sorting Category: (Experimental) 

Ultrafast X-ray Diffraction for Measurements of Structural 
Dynamics in Shocked Metals’ Jonathan Workman, Paul Keiter, George 
A. Kyrala, Jeff Roberts, Toni Taylor and David J. Funk Los Alamos 
National Laboratory An experiment on structural dynamics at the ultra- 
fast time scale in shocked metal samples is presented. The technique 
development of an ultrafast x-ray diffractometer to generate “molecular 
movies” is described. Preliminary results of static x-ray measurements of 
thin unshocked Ga samples are presented. Initial experiments use 200-300 
mJ of a lOOfs Ti:Sapphire laser to excite K-alpha x-ray emission in an 
aluminum wire. The x-ray emission is relayed using a spherical crystal to 
the sample target. Plans for experiments using Cu K-alpha emission will 
also be described. 

Prefer Poster Session Jonathan Workman 
workman@,lanl. gov 

Los Alamos National Laboratory 

’ Work performed under the auspices of the Dept. of Energy under contract # W-7405-ENG-36. 
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Practical Results from Ultrafast X-ray 
Diffraction 

Apply X-ray diffraction to shock physics 
- Determine time scales and dynamics of both solid-solid and solid- 

melt phase changes 
- Develop MD/X-ray capability to both guide experiment (location 

of X-ray transients) and enhance mechanistic understanding, 
leading to predictive capabilities 

0 Apply X-ray diffraction to next generation electronic 
materials 
- Coherent phonon generation and propagation 
- Study electron-phonon coupling dynamics 
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c Why Ultri--- t X-ray Diffraction? 
Ultrafast pump-probe diffraction 
- The synchronicity of laser drive/excitation coupled to thin crystals offers 

the only opportunity for diffraction on atomic time scales 
Example: Shock waves on the atomic scale 
- Typical velocities are: 7 m d p s ;  7 p d n s ;  7 n d p s ;  0.7 &lo fs: a bond 

every 5Ofs 

- What is the risetime? Are their elastic precursors? Do phase changes occur 
and on what time scales? Ultrafast X-ray diffraction can help answer these 
and related questions 

- Pump electrons, observe lattice motion, observe electron-phonon coupling 
dynamics 

- Create electron-hole pair, observe lattice relaxation 

Shock wave characterization 

Electron-phonon dynamics (ps time scale) 

Perturb 3-D CDW states (ps time scale) 

Quasi-particle relaxation dynamics (ps time scale) 
- Break Cooper pairs, observe phonon dynamics 
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Non-Thermal Plasmas Efficiently 
Generate Short Pulse K a X-rays 

solid target 
I . . Y '  

preplasma .............. 

20-fs 
m ultitera y tt pu/seJ 

high intensity focus 

....... 
.... ........... .... ........ ..... J ...... \ ....... 

.-._.._ I..... 

-- 
........ 

ns pulse pedest 

J.D. Kmetec, et al., PRL 68, 1527 (1990). 

I Laser-accelerated 
multi- f 0 3-ke V 
electrons 
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Laser-driven Electrons for Fast X-rays 

solid target 
Initial x-ray duration: 
convolution of Atelectron and 
stopping time or emission volume 

Source size - laser spot size 
0 MeV energies can be produced 

Bremsstrahlung and line radiation 

J.D. Kmefec, et al., PRL 27 1990 
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Ultrafast X-ray Diffractometer Uses a 
Relay Optic for X-ray Focussing 

laser pulse to generate a plasma 
laser plasma 

x-ray probe pulse 

sample 

optical excitation pulse 
Btagg diffracted Xqays 

I 
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Use of Toroidal X-ray Optics Optimizes 
Focusing 

toroidally bent crystal 

X-ray topography I 
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focus 
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*Two radii of curvature 
allows for non-normal 
incident x-rays to focus to 
nearly a point. 

01 to 1 magnification 
allows for greatly 
increased collection as 
well as localized probing. 
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Spherical Crystals Can Also Provide Relay 
Imaging for Ultrashort X-ray Sources 

Meridional Focui 

I 

N 
N 

N N 

N J 

Sagittal Focus 

.Want to Maximize Bragg angle to Minimize 
Spherical Crystal 
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Several Spherical Crystals 
are Being Considered 

Variation of x-ray energy with angle MCA(002) 7th 0 
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Previous Work at LANL Demonstrated 6-7pm 
Resolution Imaging with Spherical Crystals at 

4.75 keV 

DEF X-ray Film 
-.-xi-7 

'>\ Direct Shine Tub// 

_ _ _ . - - - - - - . . _  

Rowland Ckcle 

/ '.. ., Light Block 

Pi .I.' 
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x - p ~  source 
--..... - -  - _  

J. Workman, S. Evans and G.A. Kyrala, 
Rev Sci. Instr. 72, 674 (2001). 
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The Shar>e of the Drive Pulse is ImDortant 

130 fs drive laser pulse (dotted) 
- Shocks are not supported 

- Shock strength decreases with 
run distance 

20 

15 
- Pressure wave is triangular (few 

n ps rise, 30-40 ps fall) h 
10 What shock shape do we want? E 

1 
- Sharp rise (few ps - limited by a e 

- Constant pressure for > 200 ps 
material response) 5 

- Usually accomplished via 
support (simulation is 1 pm 
thick flyer - solid curves) 
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We have Generated a Sharply Rising Pulse 
Shape Suitable for Driving Shocks 

Laser amplifier utilizes a 
pulse stretcher and 
compressor (CPA) 

0 Red spectral end of pulse 
exits stretcher first 
Therefore 
- Block red spectral end of 

- Use uncompressed pulse to 
stretched pulse 

drive shock 
0 

14 

Compress rest of pulse for 
spec tro scop y/diagno stic s 
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High Shock Pressurr-I can ‘-3 Sur?--” ~ - -~ l!!! 

0 Shaped long drive pulse allows us 
to adjust pressure 
- 120 fs drive pulse was 

optically limited in substrate 
0.6 Mbar achievable 
Pressure can be sustained for > 
250 ps 
Diffraction interpretation 
simplified by nearly isobaric 
conditions behind shock 
S.D. McGrane, D. S. Moore, D. J. 
Funk and R. L. Rabie, Appl. Phys. 
Lett., 80(2 l), 39 19 (2002). 

0 100 200 300 

Time (DS) 

’ L T  

’d LosAlamos 
A 1.7- 9 

JBW APS-DPP’02 
15 IVA dl 



Long Pi-'-? Drive is not SPY-'ly P h a r  (y-l) Mi 

120 fs shock drive pulse 0.1 2 

0.1c 
through 150 pm thick 
glass substrate gives 
extremely planar shocks e 

Shaped long drive pulse % 0.04 

z gives only Gaussian 
sDatial Drofile to date 

0.08 

v 0.06 

0.02 

I I 

Preflatten in sapphire 

0 

- Occurs at fluences ten 
times below the damage 
threshold 

Then stretch and 
spectrally modi@ 
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First Material to Study under Shock 
Loading: Gallium - 

Crystal Properties 
- Base-centered orthorhombic (a = 45 1.97 pm, b= 

766.33 pm, c= 452.6 pm) 

.Use of 1.064 mm laser light for 
ablation of gallium 

-MacDonald et al. (J. Opt. 
SOC. Am. B. 18(3) 331 (2001)) 

-Prepared thin films of alpha 
gallium on quartz substrates 

-Cycled multiple times 
through melt with no change 

Melts at moderate shock pressure (5- 10 kbar) 
A 1.7- in behavior 

4 ms~iarnos 
JB W APS-DPP'02 

17 I V A  4 



Dynamical vs. Kinematic Diffraction Theory 
(from B. E. Warren, X-ray Diffraction) 

Perfect 
Crystal 

Mosaic 

Shocked Crystal 
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Coherent Acoustic Phonons 

Fast heating at Surface expansion 
cons tan t Volume 

--I - 

Newton's 3rd Law 

Acoustic 
PUIS - I 

Cm Thomsen et aim Phys Revrn B P  4129 (1986) 
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Coherent Acoustic Phonons 
Experiment Theory 
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Milliiingstrom lattice dynamics 
with picosecond resolution 

Chm Rose-Petruck et aim "Picosecond milliingstrom lattice dynamics 
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Ultrafast Melting (X-ray Probe) in Ge 
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Cm Wm Siders et aim, 
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area 

Science 286,1340 (1999) 4-7 P A $q 
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Probing Buried Interfaces 
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